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A numerical study of quasi-steady doubly periodic monochromatic short-crested wave
patterns in deep water is conducted using a high-order Boussinesq-type model. Simula-
tions using linear wavemaker conditions in the nonlinear model are initially used to
approximate conditions from recent laboratory experiments. The computed patterns
share many features with those observed in wavetanks, including bending (both
frontwards and backwards) of the wave crests, dipping at the crest centrelines, and
a pronounced long modulation in the direction of propagation. A new and simple
explanation for these features is provided, involving the release of spurious free
first harmonics, due to the neglect of steady third-order components in the three-
dimensional wave generation. A comparison with the experimentally observed beat
length and amplitude matches the theoretical/numerical predictions well. Additionally,
direct inclusion of steady third-order components in the wave generation is shown
to reduce significantly the modulations (and other unsteady features), further
confirming the explanation. This numerical work makes apparent some previously
unknown difficulties associated with the physical generation of even the simplest
three-dimensional waves, adding significant insight into the interpretation of recent
experimental observations.

1. Introduction
The study of doubly periodic short-crested water waves, which are perhaps the

simplest genuinely three-dimensional waveforms, is of fundamental importance to
the understanding of the multi-directional irregular sea surface. Short-crested wave
patterns are likewise of considerable practical interest, as they commonly arise,
for example, from the oblique interaction of two travelling plane waves, from the
reflection of waves at non-normal incidence off vertical sea walls, as well as from
diffraction about both ends of a finite length structure. They are therefore currently
receiving increased experimental, analytical and numerical attention, as extensions
beyond the classical two-dimensional description for water waves become more and
more common.

At the limit of small amplitudes, progressive monochromatic short-crested wave
patterns can be produced through the superposition of two linear oblique progressive
waves (with identical amplitude and frequency). However, when nonlinearities are
important, the nature of such patterns is widely known to depend on the water
depth. In shallow water, waves colliding at oblique incidence are known to produce
spectacular hexagonal shapes, as shown experimentally by Hammack, Scheffner &
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Segur (1989), and numerically by, e.g. Chen & Liu (1995), Nicholls (1998, 2001) and
Craig & Nicholls (2002). Such hexagonal patterns are also commonly observed in
coastal regions (see e.g. the photographs of Hammack et al. 1995).

Alternatively, in deep water such interactions are known to produce equally
spectacular so-called rectangular short-crested waveforms with straightened crestlines
in the transverse direction and zero nodal lines, as shown analytically by, e.g. Roberts
(1983) and Bryant (1985) and numerically by, e.g. Craig & Nicholls (2002). Short-
crested wave patterns in deep water have been studied experimentally by, e.g.
Kimmoun, Branger & Kharif (1999a), who created travelling patterns of nearly
permanent form via the sea-wall reflection of incident plane waves, as well as by
Hammack, Henderson & Segur (2005) (see also Hammack & Henderson 2003), who
generated such patterns directly through a precisely controlled wavemaker system,
comprised of multiple side-by-side paddles.

A number of steady short-crested gravity-wave solutions have been presented, e.g.
by Hsu, Tsuchiya & Silvester (1979) (see also Fenton 1985), Ioualalen (1993) and
Roberts & Peregrine (1983), in addition to those references cited previously. However,
the laboratory experiments of Hammack et al. (2005), which use linearized wavemaker
conditions, are reported to exhibit a number of rather pronounced unsteady features.
These include modulations along the direction of propagation, bending of crestlines
(both frontwards and backwards), as well as the formation of dips at the centreline
of the wave crests. Hammack et al. (2005) propose that the observed unsteadiness
is largely due to Benjamin & Feir (1967) type instabilities. Our desire to reproduce
numerically the spectacular patterns observed in these experiments has been the
primary inspiration for the present work, with the hope of providing further insight
into the root cause of these particular features. Attempts to reproduce the experimental
conditions numerically, to be described in the following, do indeed lead to similar
features. By systematically assessing the consequences of using first-order (linear)
wavemaker conditions, it will be shown that these unsteady features can in fact be
attributed to a non-intuitive, and previously unrecognized, release of spurious free first
harmonics due to neglected steady third-order contributions (in terms of Stokes-type
expansions) in the three-dimensional wave generation.

The remainder of this paper is organized as follows. The fully nonlinear numerical
Boussinesq-type model used throughout this work is described in § 2. Nonlinear
simulations of short-crested waves in deep water using linearized wavemaker condi-
tions, similar to those used in the experiments, are presented in § 3, with the resulting
observed phenomena explained in § 4. Validation of the physical explanation with
additional simulations covering a range of incident angles is provided in § 5, and a
quantitative comparison with the physical experiments is provided in § 6. Additional
simulations using third-order incident waves are considered in § 7, which greatly
reduce the previously noted modulations (and other unsteady features), providing
additional confidence in the explanation. Discussion and conclusions are finally
provided, respectively, in §§ 8 and 9.

2. The numerical model
The numerical model used in the present work is based on the recently derived fully

nonlinear, highly dispersive Boussinesq-type formulation of Madsen, Bingham & Liu
(2002) and Madsen, Bingham & Schäffer (2003). As the method has now been discus-
sed numerous times in the literature, the equations will merely be written here for
completeness. This method uses exact representations of the kinematic and dynamic
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free-surface conditions expressed in terms of surface quantities as

∂η

∂t
= w̃(1 + ∇η · ∇η) − Ũ · ∇η, (2.1)

∂Ũ
∂t

= −g∇η − ∇
(

Ũ · Ũ
2

− w̃2

2
(1 + ∇η · ∇η)

)
, (2.2)

where Ũ =(Ũ , Ṽ ) = ũ + w̃∇η. Here ũ = (ũ, ṽ) and w̃ are the horizontal and vertical
velocities directly on the free surface z = η, g =9.81 m s−2 is the acceleration due to
gravity, ∇ =(∂/∂x, ∂/∂y) is the horizontal gradient operator, and t is time. Through
a Padé-enhanced truncated series solution of the Laplace equation, the vertical
distribution of fluid velocity is approximated by

u(x, y, z, t) = (1 − α2∇2 + α4∇4)û∗(x, y, t) + ((z − ẑ)∇ − β3∇3 +β5∇5)ŵ∗(x, y, t), (2.3)

w(x, y, z, t) = (1 − α2∇2 + α4∇4)ŵ∗(x, y, t) − ((z − ẑ)∇ − β3∇3 + β5∇5)û∗(x, y, t), (2.4)
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18
, β5 =

(z − ẑ)5
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− ẑ2(z − ẑ)3
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(2.5)

Optimal velocity distributions are obtained with the expansion point near ẑ = −h/2,
and we adopt this value throughout. Considering (2.3) and (2.4) at the sea bottom
z = −h, the kinematic bottom condition (neglecting bottom slope) becomes

(
1 − 4

9
γ 2∇2 + 1

63
γ 4∇4

)
ŵ∗ +

(
γ ∇ − 1

9
γ 3∇3 + 1

945
γ 5∇5

)
û∗ = 0, (2.6)

where γ = (h+ẑ) = h/2. It is straightforward to include variable depth terms; however,
as the present work is restricted to flat bottoms, they are not presented here. Analysis
of this system has shown that it provides excellent linear and nonlinear dispersive
properties and surface quantities to (wavenumber times depth) kh ≈ 25, and accurate
velocity kinematics to kh ≈ 12, largely eliminating any shallow-water limitations
conventionally associated with Boussinesq-type methods. Thus, within a large range
of kh, the system may be regarded as a highly accurate approximation to the exact
Laplace problem for nonlinear water waves.

The system of PDEs is solved numerically using the scheme originally presented by
Fuhrman & Bingham (2004), which combines high-order 37-point finite-difference spa-
tial discretizations with a fourth-order four-stage explicit Runge–Kutta time-stepping
scheme. Simulations presented here use the matrix free Fourier space preconditioner
and irrotational operators, as discussed therein. Closed transverse boundaries are
created by imposing appropriate symmetries about the numerical sidewalls. The
numerical stability of the model has been analysed by Fuhrman et al. (2004a), and
the basic finite-difference model has been extended to incorporate rapidly varying
bathymetries by Madsen, Fuhrman & Wang (2006), as well as semi-irregular computa-
tional domains by Fuhrman, Bingham & Madsen (2005). Additional applications of
the model have been presented by Fuhrman, Madsen & Bingham (2004b), who studied
the highly nonlinear phenomenon of crescent wave patterns, due to the three-
dimensional (class II) instability of steep plane waves.
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3. Simulations using first-order incident conditions

3.1. Model set-up

The basic model set-up used throughout this work consists of an analytic wavemaker
region at the left-hand boundary, relaxed over 65 grid points (with x = 0 taken as the
end of this zone). An additional 65–100 grid-point sponge layer is similarly placed
at the right-hand boundary to absorb the outgoing wavefield. In all simulations, a
tenth- (polynomial) order 109-point (octagon shaped) Savitzky & Golay (1964) type
smoothing filter is applied incrementally to remove high-wavenumber disturbances,
which can arise owing to the discretization of the nonlinear terms. A Fourier analysis
of this filter (see the Appendix of Fuhrman, Madsen & Bingham 2006) has shown
that its dissipative effects are primarily restricted to very high-wavenumber modes
(resolved with four or fewer grid points per wavelength). The frequency of application
depends on the simulation and will be made apparent.

Throughout this section, short-crested waves are generated in the numerical model
by imposing

η(x, y, t) = a cos(ωt − kxx) cos(kyy), (3.1)

Ũ (x, y, t) =
aωkx

k

cosh kh

sinh kh
cos(ωt − kxx) cos(kyy), (3.2)

Ṽ (x, y, t) =
aωky

k

cosh kh

sinh kh
sin(ωt − kxx) sin(kyy), (3.3)

as initial conditions across the entire domain (removing any difficulties from an abrupt
incident wavefront), which are then repeated indefinitely in the wavemaker region.
These conditions satisfy the linearized water-wave problem (i.e. they correspond
to a first-order Stokes-type expansion), and are exact progressive solutions at the
limit of small amplitudes. This has been confirmed directly in the numerical model
by switching off the nonlinear terms, which indeed results in progressive doubly
periodic short-crested waves of permanent form. We are well aware that these incident
conditions are not progressive solutions to the fully nonlinear water-wave problem.
Their use is warranted in the present context, however, as they correspond closely
to the physical (linear) wavemaker conditions used by Hammack et al. (2005) in
their wavetank experiments C1–C14, where the incident angle and nonlinearity were
systematically varied. Hence, the simulations are carried out with the hope of adding
insight to some of their observations. Simulations using higher-order wavemaker
conditions will be considered in § 7.

Throughout this work, short-crested wave simulations will be characterized by their
wave steepness ak, which serves as a measure of nonlinearity, as well as the angle

θ = tan−1

(
kx

ky

)
, (3.4)

which governs the directionality, with kx = k sin θ and ky = k cos θ . Note that under this
definition, θ =0◦ corresponds to the standing wave limit, while θ = 90◦ corresponds
to the plane wave limit. All simulations in the present work are normalized using

the wavenumber modulus k =
√

k2
x + k2

y = 1 m−1, with dimensionless depth kh = 2π,

i.e. deep water. In the present section, the angular frequency is computed from the
linear dispersion relation ω =

√
gk tanh(kh) = 3.13 s−1, which with kh = 2π is essentially

equivalent to the deep-water dispersion relation ω =
√

gk. While the (normalized)
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dimensional parameters used here differ from those used in the physical experiments,
they will match closely in a dimensionless sense (in terms of both the wave steepness
and incident angle). This is justified by basic similitude.

Throughout this work, the spatial discretizations �x = Lx/32 and �y = Ly/32 are
used, where Lx = 2π/kx and Ly = 2π/ky , combined with the temporal discretization
�t = π/(32

√
gk) = 0.0313 s, corresponding to 64 time steps per linear period. The

model domain consists of a 1025 × 17 computational grid, and simulations are run for
8000 time steps (i.e. 125 periods), which is sufficient to reach equilibrium throughout
the domain.

3.2. Numerical results

We begin our simulations by studying the effects of variable wave steepness.
Specifically, we will attempt to reproduce numerically (in a non-dimensional sense)
cases C9, C12 and C14 from the experiments of Hammack et al. (2005), having
incident steepness ak =0.15, 0.30 and 0.40, respectively, with a constant incident
angle θ = 80.79◦. These cases are chosen to represent weakly, moderately and highly
nonlinear cases, respectively. In these simulations, the smoothing filter is applied after
every 64, 2 and 1 time steps, respectively. As an indication of the computational
efficiency, the simulation of case C12 with ak =0.30 requires approximately 6.2 h on
a single 3.2 GHz Pentium 4 processor.

Computed free surfaces near the end of the simulations from these three cases
are shown in figure 1, covering the first 15Lx after the wavemaker region. Note that
a full transverse wavelength is produced by simply reflecting the solutions across
the numerical sidewall a single time. Case C9 (figure 1a) which corresponds to
the lowest nonlinearity considered (ak = 0.15), expectedly results (at least visually)
in progressive doubly periodic short-crested waves of nearly constant form. In
contrast, the computed free surface for the steeper cases C12 (figure 1b) and C14
(figure 1c), clearly demonstrate an unsteady phenomenon. This is most pronounced in
the steepest case C14 (with ak = 0.40) (figure 1c) a top view of which is also shown in
figure 2.

Upon closer examination, these simulations can be shown to share many common
features with the physical experiments of Hammack et al. (2005), on which they are
based. Specific examples will be discussed in the following. First, from figure 1(c) the
wave crests can be seen to, at times, become flattened, while at other times developing
either peaks or dips at their centreline, depending on their location. These features
are given in table 6 of Hammack et al. (2005), and can be clearly seen, for example,
in their figures 9 and 14. Additionally, from the top view shown in figure 2, it is
clear that the crestlines, at times, become curved either frontwards or backwards,
depending on the location within the domain. This curving of the crestlines was also
observed in the experiments of Hammack et al. (2005), and can clearly be seen from
their experimental overhead pictures, especially in the most nonlinear experiments
depicted in their figures 9, 14 and 15. These various features can also be clearly seen
in the contour plots from the present simulations shown in figure 3, particularly in
figures 3(b) and 3(c).

Perhaps the most pronounced unsteady feature from these simulations, as well as
from the experiments, is a curious modulation in the direction of propagation, which
seems to drive the other previously mentioned features. This particular phenomenon
is more clearly demonstrated in figure 4, which shows the computed free-surface
envelope for nearly the entire computational domain along y = 0 for each of the
three cases considered. Here it is evident that, in fact, none of the three simulations
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(a)

(b)

(c)

Figure 1. Computed free surface for case (a) C9 with ak = 0.15, (b) C12 with ak = 0.30, and
(c) C14 with ak = 0.40, all at t ≈ 123.8T . The vertical scale is exaggerated (a) 20 and (b, c)
10 times.

result in a steady pattern. Rather, there is a clear modulation of roughly 7Lx–9Lx ,
even in the weakly nonlinear case C9. The amplitude of the modulation becomes
noticeably more pronounced as the wave steepness is increased (consistent with the
physical experiments), with the length of the modulation likewise becoming slightly
decreased. These computed envelopes bear a strong resemblance to those from, for
example, figure 11(a) of Hammack et al. (2005) (especially their bottom two sub-plots),
which show a measured time series from a traverse of the experimental centreline. A
quantitative comparison will be made in § 6.

Thus, we conclude that the computed short-crested surface patterns, in many
distinct ways, are consistent with those observed in the physical experiments of
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Figure 2. Computed top view of the free surface for case C14 (with ak = 0.40) at t =124.2T .
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Figure 3. Computed contour plots of the free surface for case (a) C9 with ak = 0.15, (b) C12
with ak = 0.30, and (c) C14 with ak = 0.40, all at t = 124.2T .

Hammack et al. (2005). This is hardly surprising, given that we have intentionally
tried to match their experimental set-up. Establishing this qualitative similarity is a
necessary and important first step, however, as we will attempt to explain many of
the observed experimental features directly from our numerical simulations in the
following section.
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Figure 4. Computed surface elevation envelopes along y = 0 for case (a) C9 with ak = 0.15,
(b) C12 with ak = 0.30, and (c) C14 with ak = 0.40.

4. Physical explanation
Having established that our numerical simulations are qualitatively similar to the

physical experiments of Hammack et al. (2005), we will now explain their dominant
features using simple well-established analysis concepts. More specifically, we will
systematically assess the consequences of the first-order short-crested wave generation
indicated by (3.1). While the consequences of using low-order generation methods for
two-dimensional (plane) waves are well understood, the related effects associated with
the generation of genuinely three-dimensional waves have not, to our knowledge,
been previously considered.

To gain some insight into the physical cause of the previously noted modulations,
figure 5 shows the computed first and second harmonic amplitudes along y = 0 in the
direction of propagation for the three cases considered. These are computed through
a linear-least-squares regression from time series at each grid point. From this figure,
there is a rapid (short) beat of the second harmonic amplitude, as well as a slow (long)
beat of the first harmonic amplitude. The first harmonic beat is very pronounced, and
it is clearly responsible for the large envelope modulations depicted in figure 4.

The rapid beating of the second harmonic is, in fact, a well-known artefact of
using linear boundary conditions for nonlinear problems. Because of the omission
of bound second harmonic components at the wavemaker boundary, spurious free
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Figure 5. Computed first- (full line) and second-harmonic (dashed line) amplitudes along
y = 0 for case (a) C9 with ak = 0.15, (b) C12 with ak = 0.30, and (c) C14 with ak = 0.40.

second harmonics will be released. The combination of propagating free and bound
second harmonics with different wavenumbers will then create a systematic beat in the
amplitude at this frequency. This phenomenon is well known from flume tests, and has
been studied experimentally by, e.g. Boczar-Karakiewicz (1972), Buhr-Hansen &
Svendsen (1974) and Chapalain, Cointe & Temperville (1992); theoretically by, e.g.
Mei & Ünlüata (1972), Bryant (1973) and Mei (1983); and numerically by, e.g.
Madsen & Sørensen (1993). Within the context of three-dimensional short-crested
waves, the phenomenon is slightly more complicated, and will therefore be discussed
in what follows.

To assess the release of spurious free waves occurring at a given order, we must first
establish the form of the corresponding bound components in the travelling solution.
From Hsu et al. (1979), their equation (41) (transformed into dimensional variables),
the steady second-order surface elevation is

η
(2)
bound = a2k[b1 cos(2kyy) cos(2ωt − 2kxx) + b2 cos(2ωt − 2kxx) + b3 cos(2kyy)]. (4.1)

The expressions for the various dimensionless b coefficients can be obtained from
Hsu et al. (1979), and for brevity will not be re-written here. As discussed, e.g. by
Madsen & Fuhrman (2006), the form (but not the respective amplitudes) of the bound
second-order solution can, in fact, be obtained by simply taking the square of the
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incident wavefield (3.1); however, the actual expressions from Hsu et al. (1979) will
be used here for completeness.

From (4.1), the first two terms correspond to bound second harmonics. The first
has the form of a short-crested wave, having the same directionality as the incident
wave, while the second is a plane wave travelling in the pure x-direction. The last
term represents a set-up, which is constant in x as well as in time. If the first two (time
variant) terms are absent in the prescribed incident wave (as is the case here, as well
as in the physical experiments), the model will respond by releasing spurious waves,
which will propagate as free wave components. These will have equal amplitude, but
opposite phase compared to the bound waves at the wavemaker boundary, i.e. they
will be oriented so that they cancel the missing bound components at x = 0. The
spurious free waves will therefore match the frequency and transversal wavenumbers
of the corresponding bound waves, while their wavenumbers in the x-direction will
adjust to satisfy the linear dispersion relation (assuming weak nonlinearity). The
second-order spurious wavefield will thus be of the form

η
(2)
free = −a2k[b1 cos(2kyy) cos(2ωt − k21x) + b2 cos(2ωt − k22x)], (4.2)

consisting of a free short-crested wave, as well as a free plane wave, both with
frequency 2ω. These two spurious waves will approximately satisfy the linear deep-
water dispersion relations√

k2
21 + (2ky)2 =

(2ω)2

g
= 4k, k22 =

(2ω)2

g
= 4k, (4.3)

where the former equation leads to

k21 = 2k
√

4 − cos2 θ. (4.4)

From simple superposition arguments, the presence of these two free waves yields
three potential second harmonic beat lengths. The first two are due to differences in the
x-wavenumber components of the bound and free waves, and can be approximated
by

LB21 =
2π

k21 − 2kx

, LB22 =
2π

k22 − 2kx

. (4.5)

The third beat length is potentially due to differences between the two free wave
components, and can be approximated by

LB23 =
2π

k22 − k21

. (4.6)

It is convenient to relate the beat lengths directly to the incident wavelength Lx .
In such a dimensionless form, expressed in terms of the angle θ , (4.5) and (4.6),
respectively, become

LB21

Lx

=
sin θ

2
√

4 − cos2 θ − 2 sin θ
,

LB22

Lx

=
sin θ

4 − 2 sin θ
, (4.7)

LB23

Lx

=
sin θ

4 − 2
√

4 − cos2 θ
. (4.8)

Note that as θ approaches 90◦, LB21 ≈ LB22 (≈Lx/2), and consequently LB23 becomes
very long. For the case considered in § 3 with θ = 80.79◦, the beat lengths from
(4.7) and (4.8) are: LB21 = 0.490Lx , LB22 = 0.487Lx and LB23 = 76.9Lx . The first two
are almost identical, and match reasonably the observed beat length in figure 5(a),
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Figure 6. Computed first- (full line) and second-harmonic (dashed line) amplitudes along
y = 0 from a short-crested wave simulation with ak = 0.15 and θ = 72.5◦.

corresponding to the case with the lowest nonlinearity (note that at larger steepness
these tend to increase, as seen in figure 5b, c). LB23 is too long to be captured within the
computational domain, though beating of the second harmonic is clearly diminishing
along the channel.

To illustrate more clearly the second harmonic beat length LB23, we consider an
additional simulation using ak = 0.15 and θ = 72.5◦, with the harmonic amplitudes
presented in figure 6. For this case, the predicted beat lengths from (4.7) and (4.8) are:
LB21 = 0.466Lx , LB22 = 0.456Lx and LB23 = 21.0Lx . The first two are again similar,
and match reasonably the rapid second harmonic beat length seen in figure 6. As
before, this case initially leads to a gradual disappearance of the second harmonic
beat, which is now followed by a reappearance. The beat length LB23 in fact spans
two such cycles, as the second harmonic will have maximum modulation at both the
trough and peak of the corresponding group length. The computed beat length in
this case LB23 ≈ 18Lx is, in fact, slightly less than predicted, probably due to finite-
amplitude effects. This confirms the presence of this additional second harmonic beat
length.

The beat of the second harmonic is a relatively minor feature of these simulations,
however, with the much more prominent long modulations seen in figure 4 clearly
driven by the (as yet unexplained) beat of the first harmonic. To explain this first
harmonic modulation, we must continue our evaluation to third order. As discussed,
e.g. by Madsen & Fuhrman (2006), the form (but not the respective amplitudes)
of the steady third-order surface elevation can be established simply by evaluating
the square of the sum of first- and second-order solutions, which is equivalent to
a cubic power of the first-order solution (3.1). For completeness, however, we will
again use the expressions from the steady solution of Hsu et al. (1979), with the
b (dimensionless amplitude) coefficients as given therein. From their equation (58)
(expressed in a dimensional form), the steady third-order surface elevation reads

η
(3)
bound =

a3k2

2
[b11 cos(kyy) cos(ωt − kxx) + b13 cos(3kyy) cos(ωt − kxx)

+ b31 cos(kyy) cos(3ωt − 3kxx) + b33 cos(3kyy) cos(3ωt − 3kxx)]. (4.9)

The first (b11) term in (4.9) has the same form as the prescribed incident wave (3.1),
representing a third-order correction to the first-order amplitude. This term was
added by Hsu et al. (1979) in order to eliminate third-order secular terms, which
is an arbitrary choice and could alternatively be added to the velocity potential
(see Madsen & Fuhrman 2006). Hence we shall neglect this term in the following
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discussion. The last three terms in (4.9), having non-dimensional amplitudes b13, b31

and b33, represent bound waves. Similarly to before, neglecting these three terms in the
wave generation (as done here, as well as in the experiments) will lead to the release of
three corresponding spurious free waves. These will again match the frequencies and
y-wavenumbers of the corresponding bound waves, but with adjusted x-wavenumber
components. The third-order spurious wavefield will then be of the form

η
(3)
free = −a3k2

2
[b13 cos(3kyy) cos(ωt − k13x)

+ b31 cos(kyy) cos(3ωt − k31x) + b33 cos(3kyy) cos(3ωt − k33x)]. (4.10)

The presence of the last two terms from (4.10) will result in modulations of the third
harmonic amplitude. These have indeed been detected from the model, though we
will not focus on them here. The spurious free wave stemming from the first term in
(4.10) is more interesting in the present context, as it will create modulations in the
first harmonic amplitude, potentially explaining the behaviour seen in figure 5. As a
first estimate, we may again assume that the free waves from (4.10) satisfy the linear
deep-water dispersion relation. For the spurious free first harmonic this leads to√

k2
13 + (3ky)2 =

ω2

g
= k, (4.11)

where solving for k13 finally gives

k13 =
√

k2 − (3ky)2 = k
√

1 − 9 cos2 θ. (4.12)

The x-variation of the first harmonic amplitude is therefore caused by the difference
in the x-wavenumber components of the incident and spurious free waves, and the
resulting beat length can be approximated by

LB =
2π

kx − k13

, (4.13)

or in dimensionless form

LB

Lx

=
sin θ

sin θ −
√

1 − 9 cos2 θ
. (4.14)

For the cases with θ =80.79◦ this gives LB = 8.98Lx , closely matching the observed
first harmonic beat length observed, e.g. in figure 5(a). This confirms the present
explanation, at least for the simulations considered.

The explanation of this first-harmonic beat is new. It is due entirely to the three-
dimensionality of the problem, and will disappear at the plane wave limit (where
it becomes infinitely long), which probably explains why it has not been previously
made apparent. Note also from (4.12) that k13 can become complex when the quantity
within the square root is negative. Therefore, these spurious free first harmonics can
only exist as progressive wave modes when the threshold

cos θ < 1
3
, (4.15)

is satisfied. This corresponds to θ > 70.53◦, i.e. the phenomenon is restricted to
relatively large incident angles. At this threshold LB =Lx , i.e. the modulation length
matches the incident wavelength. It is worth mentioning that all of the experiments
from Hammack et al. (2005) satisfy the criterion from (4.15), and all were reported
to exhibit modulations along the direction of propagation. In contrast, the earlier
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Figure 7. Comparison of the theoretical (line, from (4.14)) and computed (squares) beat
length of the first harmonic amplitude. The computed points are from simulations with
steepness ak = 0.15, except for the case with θ = 85◦ where ak = 0.10. The additional � marks
the computed beat length for case C14 (with ak = 0.40) from figure 5(c), while × marks the
corresponding experimental value estimated from figure 11(a) (bottom sub-figure) of Hammack
et al. (2005).

short-crested wavetank experiments of Kimmoun et al. (1999a) were restricted to
θ � 45◦ and showed no evidence of such a beat. Thus, observations from both sets of
physical experiments are consistent with the present explanation.

The other features mentioned earlier, i.e. bending wave crests, and peaks or dips
at the crest centrelines (see again figures 1, 2 and 3), are clearly related to the first
harmonic modulation, as their respective evolutions all follow the same beat length.
The bending crests, either frontwards or backwards, can be explained simply through
the phase of the spurious first harmonic relative to the primary short-crested wave.
If the peak of the spurious free wave at a given location is slightly in front of or
behind a primary wave crest, it will, respectively, appear to bend it frontwards or
backwards. Peaks/dips along the centreline will similarly occur at locations where a
primary wave crest is in phase with a peak/trough of a spurious free first harmonic
(which has transversal wavenumber 3ky), provided that it is of sufficient amplitude.
Thus all of these unsteady features are in fact closely related, and can be explained
in a unified fashion from this phenomenon.

5. Validation against additional simulations
Further confirmation of the first harmonic beat length explained in the previous

section is provided in figure 7, which demonstrates a comparison of the predicted
values of LB/Lx from (4.14) with results from additional numerical simulations
(having low steepness, shown as squares), where θ is varied. The case with θ = 80.79◦

corresponds to case C9, while that with θ = 72.5◦ is depicted in figure 6. As can
be seen, in each of the simulations, the match in the first harmonic beat length
compares extremely well with the theoretical predictions. Note also that a simulation
with θ = 70◦ shows no sign of the spurious first harmonic, whereas with θ = 71◦ the
modulation is as predicted (see figure 7), directly confirming the threshold from (4.15).
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Figure 8. Comparison of the computed (dimensionless and normalized) spurious first
harmonic amplitude from simulations (squares, from the same series as in figure 7) with
the absolute value of the b13 coefficient (line) from (5.1). �, computed; ×, experimental values
from case C14, with ak =0.40.

As discussed previously, the amplitudes of the spuriously generated free waves
may be estimated directly from those of the corresponding neglected terms in the
steady third-order solution. For the case of the spurious free first harmonic, as already
indicated in (4.10), this corresponds to the dimensionless coefficient b13. From equation
(60b) of Hsu et al. (1979) this is given by

b13 =
(
9ω−4

0 − 6 + 2ω4
0

)/
16 − m2

(
3ω−8

0 + 5
)/

16 + n2
(
3ω−8

0 + 1
)/

16

+
[
16

(
γ1 tanh(γ1kh) − ω2

0

)]−1[(−3ω−6
0 + 8ω−2

0 − 3ω2
0 + 2ω6

0

)
+ m2

(
− 6ω−6

0

+ 4ω−2
0 − 10ω2

0

)
+ n2

(
6ω−6

0 − 4ω−2
0 − 2ω2

0

)
+ 4n2(m2 − n2)ω−2

0

]
, (5.1)

where ω0 =
√

tanh(kh), m = sin θ , n= cos θ and γ1 = (m2 + 9n2)1/2. A comparison of
the computed and theoretical beat amplitudes for variable θ is shown in figure 8,
using the same series of simulations as in figure 7. Here the values of the spurious first
harmonic amplitude aB from the simulations have been estimated as half the total
modulation from harmonic analyses similar to those shown in figure 5. These are
then normalized appropriately (as indicated on the y-axis of figure 8) so that direct
comparison with the theoretical b13 coefficient can be made. Again, the comparison
results in a good match between the computed and theoretical results, with minor
differences noticeable at large θ . Clearly, the importance of the responsible term grows
considerably as θ approaches 90◦, resulting in a similar increase in the amplitude of
the spuriously generated first harmonic in simulations where the corresponding bound
term has been neglected. This suggests that the first-harmonic modulation is likely to
be much more easily observed at larger values of θ , consistent with the experimental
observations of Hammack et al. (2005), which indeed used relatively large θ . It should
be stressed, however, that the prediction of the beat amplitude using (5.1) will become
increasingly inaccurate as θ → 90◦, since the third-order perturbation expansion of Hsu
et al. (1979), in fact, has a zero radius of convergence at this limit (see e.g. Roberts &
Peregrine 1983). Note that for this reason, the simulated case with θ =85◦ uses a
slightly lower steepness (ak = 0.10, rather than ak = 0.15) which we find improves the
match with the theoretical predictions.
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This comparison further validates the theory developed in § 4, in terms of both the
beat length and amplitude, over a wide range of the incident angle θ .

6. Quantitative comparison with physical experiments
As further evidence that the present explanation is indeed responsible for the

observed experimental features, we will now attempt a more quantitative comparison
with the experiments of Hammack et al. (2005). Earlier comparisons of spuriously
generated free harmonics from numerical models and experiments (in a single
horizontal dimension) have been successfully made, e.g. in Mei (1983, figures 11.3 and
12.2), and Madsen & Sørensen (1993, figures 8 and 10), indicating that a reasonable
match is indeed possible, despite the obvious differences between numerical and
physical wave generation. Hammack et al. (2005) conducted a series of short-crested
wave experiments (their C2–C8) similar to that presented in the previous section,
where the angle θ was varied within the interval 77.7◦ <θ < 86.9◦. Unfortunately, in
most of these cases it is difficult to quantify accurately the beat length and amplitude,
as the experiments were not designed specifically with this in mind. The phenomenon
is particularly clear, however, from their figure 11(a), especially for cases C13 and
C14 (with ak = 0.35 and 0.40, respectively), which closely resemble figure 4(c). We
will therefore limit the current comparison to case C14 from the experiments, where
the phenomenon is most apparent.

Figure 11(a) of Hammack et al. (2005) provides measured experimental time series
from a centreline traverse at a speed of 0.1059 m s−1. From their bottom sub-figure
(case C14) a beat time of roughly 6.5 s may be estimated. This implies a beat length
of LB ≈ 0.1059 m s−1 × 6.5 s = 0.688 m. Their experiment uses a wavenumber modulus
k = 64 m−1, giving wavelength Lx = 2π/(k sin θ) = 0.0995 m, which ultimately leads to
the relative beat length LB ≈ 6.9Lx . From figure 5(c) we measure LB = 7.1Lx , an
excellent match. These measured/computed points are shown by ×/� on figure 7,
where a reasonable, though not perfect, match with the theoretical curve can be
seen. It is important to emphasize, however, that these particular experiments
involve quite nonlinear waves, which as discussed earlier, lead to a reduction in
the observed beat length. This reduction can be explained by inspecting the evolution
equations for the harmonic amplitudes (see e.g. Madsen & Sørensen 1993), which
reveal that (4.13) is only a first approximation, valid for small-amplitude wave–wave
interactions.

Similarly, from the bottom sub-plot of figure 11(a) of Hammack et al. (2005),
the amplitude of the spurious free first harmonic may be estimated (taking roughly
half the difference between the high and low peaks of the modulating envelope) as
aB ≈ 0.0011 m, giving a dimensionless value of aBk ≈ 0.070. From the simulation of this
case, figure 5(c), we measure a very close aBk = 0.067. These measured and computed
values respectively correspond to normalized dimensionless values of 2aB/(a3k2) ≈ 2.2
and 2.1, which are also shown on figure 8. Both values are significantly below the
theoretical line (which again assumes weak nonlinearity), but are again quite similar
to each other.

This comparison demonstrates a close match in both the beat length and
amplitude between the numerical simulations and physical experiments. While further
comparison with future experimental data is obviously desirable, this provides strong
evidence that the previously described release of spurious free first harmonics, owing
to the neglect of third-order contributions in the three-dimensional wave generation,
is indeed the likely explanation of the observed experimental features.
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Figure 9. Computed first- (full line) and second- (dashed line) harmonic amplitudes from
simulations using third-order incident conditions with (a) ak =0.15 and (b) ak = 0.30.

7. Simulations using third-order incident conditions
As the physical explanation of the modulating phenomenon described in § 4 stems

from the absence of steady third-order contributions in the wave generation, it is
of interest to consider simulations where these third-order contributions have been
included in the generation. Therefore, figure 9 shows computed first and second
harmonic amplitudes from a repeat of cases C9 and C12, where the general third-
order bichromatic theory of Madsen & Fuhrman (2006) has now been used for the
wave generation. This theory has been shown essentially to reduce to the steady
third-order short-crested wave solution of Hsu et al. (1979) when the frequencies and
amplitudes of the two input (first-order) waves are identical (Madsen & Fuhrman
2006). Additionally, this theory provides a means for determining the mean volume
flux, which has been set to zero in the following simulations, to match conditions
of a closed flume. The simulations again use ak =0.15 and 0.30, where a is here
the combined amplitude of the first-order components. Figure 9(a, b) can then be
compared directly with figure 5(a, b).

In figure 9(a) the second harmonic amplitude is seen to be effectively constant
across the entire computational domain, confirming the correctness of the generation
to second order. The steadiness of the first harmonic amplitude is also significantly
improved, further confirming the explanation from § 4. Minor modulations are still
evident, however, which generally become larger as the steepness is further increased,
as seen in figure 9(b). These modulations, which share the same beat lengths as seen,
e.g. in figure 5(b), can in fact be attributed to neglected higher-order effects. As
evidence that this is indeed the case, we note that from figure 9(a) (with ak =0.15)
the dimensionless amplitude of the remaining first-harmonic beat is aBk = 0.0025,
whereas figure 9(b) (with ak = 0.30) yields aBk =0.0484. This implies a scaling of power
log(0.0484/0.0025)/ log(0.3/0.15) = 4.26, clear evidence that the remaining modulation
is fourth order (and higher) in nature, which should be expected.
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Figure 10. Computed contour plots from simulations using third-order incident conditions
with (a) ak = 0.15 and (b) ak = 0.30.

Computed contour plots from these two simulations are also shown in figure 10.
These illustrate a significant improvement when compared to the previous simulations
depicted in figure 3. The bending wave crests and peaks/dips along the centreline,
which are so apparent, e.g. in figure 3(b), are now practically absent in figure 10(b).
Hence, these simulations convincingly demonstrate that the addition of steady third-
order components to the wave generation greatly reduces the previously described
unsteady features. While higher-order steady solutions exist, e.g. from Roberts (1983)
or Bryant (1985), for simplicity, the present demonstration will be limited to third-
order incident conditions, as these are sufficient to confirm directly the explanation
from § 4.

8. Discussion
Hammack et al. (2005) provide qualitative explanations for many of their observed

unsteady features. Specifically, they speculate that nearly all of their observed
unsteady features (features 3–10 and 12 of their table 6), including the modulations
in the x-direction and dips/flattening of the crestlines, can be explained via the
(Benjamin–Feir type) instability of the observed patterns. We generally disagree with
this explanation. Steady short-crested waves in deep water are indeed unstable to
infinitesimal perturbations, as shown, e.g. by the analysis of Ioualalen & Kharif
(1994) (see also Badulin et al. 1995; Kimmoun et al. 1999b). However, while analyses
of the measured experimental time series, e.g. figure 11(b) of Hammack et al. (2005),
do demonstrate minor unstable side-band growth, the detected side-band amplitudes
are typically (at least) an order of magnitude smaller than that of the primary wave.
This, therefore, cannot explain the severity of the observed modulations, which in
some cases nearly reduce the amplitude of the centreline envelope to half, quite similar
to figure 4(c). Additionally, it should be pointed out, that the modulation lengths
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observed in the experiments are inconsistent with the group lengths that would be
expected from the dominant (class Ia) short-crested wave instabilities found, e.g. by
Ioualalen & Kharif (1994) and Kimmoun et al. (1999b).

That the modulations, in both the simulations and experiments, begin immediately
after the wave generation is further evidence of their cause being the release of
spurious harmonics, as Benjamin–Feir-type instabilities typically require long distances
to develop. Note also that, as short-crested wave instabilities are generally weaker than
their plane wave counterparts (Ioualalen & Kharif 1994), they should correspondingly
require an even longer distance to develop from experimental background noise.
Moreover, we have performed additional long-time fully nonlinear numerical simula-
tions of both class Ia and Ib short-crested wave instabilities (see Fuhrman, Madsen &
Bingham 2006). These typically lead, for example, to a quasi-recurrence cycle (of
typically O(100) wavelengths) or a frequency downshift, with results depending some-
what on the incident wave nonlinearity, i.e. the unstable evolution is qualitatively
different from those observed here or in the experiments of Hammack et al. (2005).

Hammack et al. (2005) also claim that steady third-order solutions for short-crested
waves (with large θ) can alternatively explain the observed dips along the centreline,
when the steepness is sufficiently large. There are two principal shortcomings with
this explanation, however. First, as already acknowledged by Hammack et al. (2005),
the observed dips were, in fact, not steady. Secondly, the presence of centreline dips
in a steady third-order solution indicates that the theory is no longer valid, and that
higher-order effects (or a different expansion, as in Roberts & Peregrine 1983) should
be taken into account, which will in turn straighten out the crests. This is illustrated,
for example, in figure 7(d) of Roberts (1983), figures 4 and 5 of Roberts & Peregrine
(1983), and figure 7 of Bryant (1985), which show highly nonlinear steady deep-water
short-crested wave patterns with straight crests and large θ .

Additionally, the bending of the crestlines is likewise explained by Hammack et al.
(2005) within the context of steady third-order solutions. However, these solutions
(at sufficient steepness) exhibit simultaneous frontward and backward bending of a
given crest (each crest being front–back symmetric, see e.g. their figure 20a), whereas
the experimental pictures demonstrate crests bending either frontwards or backwards
at a given instant, similar to those shown in figures 2 and 3. Higher-order steady
contributions will likewise remove such bending, as is apparent from the previously
mentioned figures from the literature.

Thus, Hammack et al. (2005) correctly predict that many of the features are
indeed third-order in nature, but do not account for the release of spurious free first
harmonics as a consequence of using first-order wavemaker conditions. The close
match (both qualitatively and quantitatively) between the simulations presented here
and the physical observations of Hammack et al. (2005) provides strong evidence
that this is indeed the proper explanation of the most pronounced unsteady features
observed in the experiments (i.e. long modulations, dipping at the wave crests, and
curving crestlines). Furthermore, this simple explanation removes the previously noted
discrepancies, while also demonstrating how these various features are in fact closely
related to one another.

As the use of first-order wavemaker conditions is commonplace in wavetank
experiments involving short-crested waves, the recognition of this phenomenon is
fundamentally important to both experimentalists and numerical modellers alike.
That a low-order short-crested (three-dimensional) wave generation can directly
affect the spatial evolution of the primary frequency, inducing a long modulation,
is particularly troublesome from an experimental viewpoint, as the measured wave
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amplitude can in turn vary dramatically depending on the location. As can be seen
from figure 4(b, c) and figure 5(b, c), the effects due to this third-order contribution can
be quite pronounced (even dominant), particularly when the wave steepness becomes
moderately large. Indeed, based on our numerical results, which are likewise supported
by the physical experiments, it is seemingly impossible to generate reasonably steady
progressive short-crested waves (of even moderate steepness) at large incident angles
(θ > 70.53◦) without taking into account third-order effects in the wave generation.
This work therefore makes apparent the need for a third-order (three-dimensional)
wavemaker theory, before the phenomenon of truly progressive finite-amplitude short-
crested waves (at large θ) can be more reliably studied in experimental wavetanks.
Currently, wavemaker theory has only been developed to second-order (see e.g.
Schäffer 1996; Schäffer & Steenberg 2003), which is already rather complicated. As
this phenomenon has been shown to occur in the generation of monochromatic
short-crested waves (i.e. the simplest three-dimensional waves) there are also likely to
be related consequences in more general three-dimensional wave generation, though
we will not specifically pursue them here.

It should finally be mentioned that Hammack et al. (2005) describe an additional
series of experiments using a Jacobi elliptic sine function in the transverse direction.
It seems likely that spurious free first harmonics were likewise generated in these
experiments, as modulations in the propagating direction, curving of the crestlines,
and centreline dips are also reported in these experiments. This is consistent with
the present explanation. In principle, any generation of finite-amplitude short-crested
waves (with θ > 70.53◦) which does not strictly satisfy the wavemaker problem to third
order will suffer, in some degree, from this phenomenon. Given the previous results,
it is also likely that even higher-order effects might become important, depending on
the desired wave steepness and incident angle θ . Their consideration is beyond the
scope of the present work, however.

9. Conclusions
A numerical model based on a high-order Boussinesq-type formulation has been

used to study dynamics related to the generation of monochromatic short-crested
wave patterns in deep water. To approximate conditions from a series of recent
physical experiments from Hammack et al. (2005), linear (sinusoidal) doubly periodic
wavemaker conditions have been imposed as incident conditions in the nonlinear
numerical model under a variety of wave steepnesses and incident angles. The
simulated wavefields share many common features with the experiments, including
bending (both frontwards and backwards) of the wave crests, dips along the
centreline, and a pronounced long modulation along the direction of propagation.
The modulation has been isolated as the driving mechanism of the other features.

The consequences of such a first-order short-crested wave generation (for finite-
amplitude waves) have, for the first time, been systematically assessed. From the
combined simulations and analysis, the modulating phenomenon is demonstrated
to arise, not from a Benjamin–Feir-type instability as previously speculated, but
from a non-intuitive, yet inevitable, release of free first harmonics due to neglected
third-order components in the wave generation. The phenomenon is due entirely to
the three-dimensionality of the problem, and will disappear (i.e. become infinitely
long) at the plane wave limit. It is also limited to the generation of short-crested
waves at relatively large incident angles (theoretically for θ > 70.53◦), consistent with
the experimental conditions where it was apparently observed. A comparison of the
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numerical/theoretical beat length and amplitude with the measurements confirms this
explanation. Inclusion of steady third-order contributions in the incident wavefield
has additionally been shown to reduce greatly the first-harmonic modulation (and
other unsteady features), providing yet further confirmation.

This work reveals previously unrecognized difficulties in the physical generation of
even the simplest three-dimensional waves, which must be overcome before steady,
moderately steep short-crested waves can be more reliably generated in physical
wavetanks. This work also serves as a good demonstration of the ability of direct
numerical simulation (combined with analysis) to provide significant insight into the
interpretation of physical (experimental) observations.
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the Danish Technical Research Council (STVF grant 9801635) for providing financial
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Mei, C. C. & Ünlüata, U. 1972 Harmonic generation in shallow water waves. In Waves on Beaches
and Resulting Sediment Transport (ed. R. E. Meyer), pp. 181–202. Academic.

Nicholls, D. P. 1998 Traveling water waves: spectral continuation methods with parallel
implementation. J. Comput. Phys. 142, 224–240.

Nicholls, D. P. 2001 On hexagonal gravity water waves. Math. Comput. Simulation 55, 567–575.

Roberts, A. J. 1983 Highly nonlinear short-crested water waves. J. Fluid Mech. 135, 301–321.

Roberts, A. J. & Peregrine, D. H. 1983 Notes on long-crested water waves. J. Fluid Mech. 135,
323–335.

Savitzky, A. & Golay, M. J. E. 1964 Smoothing and differentiation of data by simplified least
squares procedures. Anal. Chem. 36, 1627–1639.
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